A Data-driven Approach to Actuator and Sensor Fault Detection, Isolation and Estimation in Discrete-Time Linear Systems

نویسندگان

  • Esmaeil Naderi
  • Khashayar Khorasani
چکیده

We propose explicit state-space based fault detection, isolation and estimation filters that are data-driven and are directly identified from only the system input-output (I/O) measurements and through the system Markov parameters. The proposed procedures do not involve a reduction step and do not require identification of the system extended observability matrix or its left null space. The performance of the proposed filters is directly connected to and linearly dependent on the errors in the Markov parameters identification process. It is shown that the system observability will suffice for characterizing the fault detection, isolation and estimation filters for both sensor faults as well as fault detection observers for the actuator faults. However, characterizing the actuator fault isolation and estimation filters is feasible only if the system is minimum phase. We have also quantified the fault estimation error in terms of the Markov parameters identification errors. Finally, we have provided several illustrative case study simulations that demonstrate and confirm the merits of our proposed schemes as compared to methodologies that are available in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensor Fault Detection for a class of Uncertain Nonlinear Systems Using ‎Sliding Mode Observers

This paper deals with the issues of sensor fault detection for a class of Lipschitz uncertain nonlinear system. By definition coordinate transformation matrix for system states and output system, at first the original system divided into two subsystems. the first subsystem includes uncertainties but without any sensor faults and the second subsystem has sensor faults but is free of uncertaintie...

متن کامل

Fault Detection and Isolation of Multi-Agent Systems via Complex Laplacian

This paper studies the problem of fault detection and isolation (FDI) for multi-agent systems (MAS) via complex Laplacian subject to actuator faults. A planar formation of point agents in the plane using simple and linear interaction rules related to complex Laplacian is achieved. The communication network is a directed, and yet connected graph with a fixed topology. The loss of symmetry in the...

متن کامل

Robust Model- Based Fault Detection and Isolation for V47/660kW Wind Turbine

In this paper, in order to increase the efficiency, to reduce the cost and to prevent the failures of wind turbines, which lead to an extensive break down, a robust fault diagnosis system is proposed for V47/660kW wind turbine operated in Manjil wind farm, Gilan province, Iran. According to the acquired data from Iran wind turbine industry, common faults of the wind turbine such as sensor fault...

متن کامل

Robust H-Infinity Actuator Fault Diagnosis with Neural Network

The paper deals with the problem of a robust actuator fault diagnosis for Linear Parameter-Varying (LPV) systems with Recurrent Neural-Network (RNN). The preliminary part of the paper describes the derivation of a discrete-time polytopic LPV model with RNN. Subsequently, a robust fault detection, isolation and identification scheme is developed, which is based on the observer and H∞ framework f...

متن کامل

An Unknown Input Observer for Fault Detection Based on Sliding Mode Observer in Electrical Steering Assist Systems

Steering assist system controls the force transfer behavior of the steering system and improves the steering probability of the vehicle. Moreover, it is an interface between the diver and vehicle. Fault detection in electrical assisted steering systems is a challenging problem due to frequently use of these systems. This paper addresses the fault detection and reconstruction in automotive elect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Automatica

دوره 85  شماره 

صفحات  -

تاریخ انتشار 2017